министерство просвещения российской федерации

Министерство образования Тульской области

Комитет по образованию администрации муниципального образования

г. Ефремов

МКОУ "СШ №6"

СОГЛАСОВАНО

Педагогическим советом

Протокол №1 от 30 августа 2024 г.

УТВЕРЖДЕНО

Директор МКОУ/«СШ-№6»

Комиссарова Т.А.

Приказ № 88

От 30 августа 2024 г.

РАБОЧАЯ ПРОГРАММА

учебного предмета «Физика»

очно-заочного обучения

для обучающихся 11классов

Учитель Самойлова Е.Н.

Квалификационная категория C3Д

Пояснительная записка

Рабочая программа по физике для 10-11 классов составлена на основе Примерной программы по физике для среднего (полного) общего образования, федерального компонента Государственного стандарта по физике, утвержденного приказом Минобразования РФ от 5 марта 2004г. №1089 и программы по физике для 10-11 классов П.Г.Саенко и др. (Программы общеобразовательных учреждений. Физика. 10-11 классы. Издательство «Просвещение», 2007г),

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения.

Изучение физики в средних (полных) образовательных учреждениях на базовом уровне направлено на достижение следующих <u>целей</u>:

- *освоение знаний* о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;
- *овладение умениями* проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний; оценивать достоверность естественнонаучной информации;
- *развитие* познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;
- **воспитание** убежденности в возможности познания законов природы; использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;
- использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, рационального природопользования и охраны окружающей среды.

Методика преподавания предмета. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и методы научного познания»

Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника *научным методом познания*, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики в примерной программе среднего (полного) общего образования структурируется на основе физических теорий: механика, молекулярная физика, электродинамика, электромагнитные колебания и волны, квантовая физика.

Особенностью предмета физика в учебном плане образовательной школы является и тот факт, что овладение основными физическими понятиями и законами на базовом уровне стало необходимым практически каждому человеку в современной жизни.

Внесенные изменения в авторскую программу. Содержание рабочей программы практически полностью совпадает с содержанием программы П.Г.Саенко и др. Изменены формулировки некоторых тем согласно содержанию Государственного стандарта и примерной программы по физике для среднего (полного) общего образования.

Количество часов. Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 140 часов для обязательного изучения физики на базовом уровне ступени среднего (полного) общего образования. В том числе в X и XI классах по 70 учебных часов из расчета 2 учебных часа в неделю. В рабочей программе для 11 класса предусмотрено 68 учебных часа (2 часа в неделю) согласно учебному плану школы.

Методы и формы обучения. Основными методами обучения физике в 10-11 классах являются: объяснительно-иллюстративные (информационно-рецептивные) и исследовательские, используются также репродуктивные, проблемного изложения и частично-поисковые (эвристические). Формы обучения: урок, лекция, лабораторная и лабораторно-практическая работы, практическое занятие.

С целью формирования экспериментальных умений в программе предусмотрена система демонстраций и лабораторных работ.

На уроках физики в 10 и 11 классах предполагается использование ИК технологий: ЦОР, ресурсов Интернет и презентаций по материалам отдельных уроков.

Учебно-тематический план

			В том числе		
№ п/п	Тема	Количество часов	Лабораторные работы	Контрольные работы	
	10 кла	cc			
1	Введение	1			
2	Механика	30	2	2	
3	Молекулярная физика. Термодинамика	20	1	2	
4	Электродинамика	15	2	1	
5	Повторение	4			
	Всего	70	5	5	
	11 кла	cc		L	
	Электродинамика (продолжение)	10	2	1	
	Колебания и волны	10	1	1	
	Оптика	13	4	1	
	Квантовая физика и элементы астрофизики	24	1	1	
	Резерв свободного учебного времени	11			
	Всего	68	8	4	

Основное содержание

10 класс (70 часов, 2 часа в неделю)

Физика и методы научного познания (1 час)

<u>Физика – наука</u> о природе. <u>Научные методы познания окружающего мира и их отличия от других методов познания. Роль эксперимента и теории в процессе познания природы. Моделирование физических явлений и процессов. <u>Научные гипотезы. Физические законы.</u> <u>Физические теории. Границы применимости физических законов и теорий. Принцип соответствия.</u> Основные элементы физической картины мира.</u>

Механика (30 час)

<u>Механическое движение и его виды.</u> Основные понятия кинематики. Прямолинейное равномерное движение. Относительность механического движения. <u>Принцип относительности Галилея.</u> <u>Прямолинейное равноускоренное движение.</u> Свободное падение. Движение по окружности.

Законы динамики. Силы в механике. Гравитационные силы. Всемирное тяготение. Сила тяжести и вес. Сила упругости. Силы трения. Законы сохранения в механике. Закон сохранения импульса. Реактивное движение. Работа силы. Теоремы об изменении кинетической и потенциальной энергии. Закон сохранения энергии в механике. Предсказательная сила законов классической механики. Использование законов механики для объяснения движения небесных тел и для развития космических исследований. Границы применимости классической механики.

Демонстрации

Зависимость траектории от выбора системы отсчета.

Падение тел в воздухе и в вакууме.

Явление инерции.

Сравнение масс взаимодействующих тел.

Второй закон Ньютона.

Измерение сил.

Сложение сил.

Зависимость силы упругости от деформации.

Силы трения.

Условия равновесия тел.

Реактивное движение.

Переход потенциальной энергии в кинетическую и обратно.

Лабораторные работы и опыты

Измерение ускорения свободного падения.

Исследование движения тела под действием постоянной силы.

Изучение движения тел по окружности под действием силы тяжести и упругости (№1).

Исследование упругого и неупругого столкновений тел.

Сохранение механической энергии при движении тела под действием сил тяжести и упругости (№2).

Сравнение работы силы с изменением кинетической энергии тела.

Молекулярная физика (20 час)

Идеальный газ. <u>Модель идеального газа.</u> Давление газа. Основное уравнение МКТ идеального газа. <u>Абсолютная температура как мера средней кинетической энергии</u> теплового движения частиц вещества. Уравнение состояния идеального газа. Газовые

законы. Реальный газ. Воздух. Пар. Строение и свойства жидкостей и твердых тел. Жидкое состояние вещества. Свойства поверхности жидкости. Твердое состояние вещества.

Термодинамика как фундаментальная физическая теория. Работа в термодинамике. Теплопередача. Количество теплоты. Законы термодинамики. Первый закон (начало) термодинамики. Второй закон термодинамики. Порядок и хаос. Необратимость тепловых процессов. Тепловые двигатели и охрана окружающей среды.

Демонстрации

Механическая модель броуновского движения.

Изменение давления газа с изменением температуры при постоянном объеме.

Изменение объема газа с изменением температуры при постоянном давлении.

Изменение объема газа с изменением давления при постоянной температуре.

Кипение воды при пониженном давлении.

Устройство психрометра и гигрометра.

Явление поверхностного натяжения жидкости.

Кристаллические и аморфные тела.

Объемные модели строения кристаллов.

Модели тепловых двигателей.

Лабораторные работы и опыты

Измерение влажности воздуха.

Измерение удельной теплоты плавления льда.

Измерение поверхностного натяжения жидкости.

Опытная проверка закона Гей-Люссака (№3).

Электродинамика (15 час)

Введение в электродинамику. Электростатика. Электродинамика как фундаментальная физическая теория. Элементарный электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряженность. Проводники и диэлектрики в электрическом поле. Энергетические характеристики электрического поля. Конденсаторы. Энергия заряженного конденсатора. Электрический ток. Условия существования электрического тока. Закон Ома для участка цепи. Схемы электрических цепей. Работа и мощность постоянного тока. ЭДС. Закон Ома для полной цепи. Закономерности протекания тока в среде. Электрический ток в металлах. Электрический ток в полупроводниках. Электрический ток в вакууме. Электрический ток в проводящих жидкостях.

Демонстрации

Электрометр.

Проводники в электрическом поле.

Диэлектрики в электрическом поле.

Энергия заряженного конденсатора.

Электроизмерительные приборы.

Лабораторные работы и опыты

Измерение электрического сопротивления с помощью омметра.

Изучение последовательного и параллельного соединения проводников (№4)

Измерение ЭДС и внутреннего сопротивления источника тока (№5).

Измерение элементарного заряда.

Повторение – 4 часа.

11 класс (68 час, 2 часа в неделю)

Электродинамика (продолжение) (10 час)

Стационарное магнитное поле. <u>Магнитное поле тока.</u> Сила Ампера. *Плазма. Действие магнитного поля на движущиеся заряженные частицы*. Сила Лоренца. Магнитные свойства вещества.

<u>Явление электромагнитной индукции.</u> Направление индукционного тока. Правило Ленца. <u>Взаимосвязь электрического и магнитного полей.</u> Свободные электромагнитные колебания. <u>Электромагнитное поле.</u>

Демонстрации

Магнитное взаимодействие токов.

Отклонение электронного пучка магнитным полем.

Магнитная запись звука.

Зависимость ЭДС индукции от скорости изменения магнитного потока.

Лабораторные работы

Наблюдение действия магнитного поля на ток (№1).

Изучение явления электромагнитной индукции (№2).

Измерение магнитной индукции.

Колебания и волны (10 час)

Свободные и вынужденные механические колебания.

Аналогия между механическими и электромагнитными колебаниями. Переменный электрический ток.

Трансформаторы. Производство, передача и использование электрической энергии.

Волна. Свойства волн и основные характеристики. Электромагнитные волны.

Опыты Герца. Изобретение радио А.С.Поповым. Принципы радиосвязи.

Демонстрации

Свободные электромагнитные колебания.

Осциллограмма переменного тока.

Генератор переменного тока.

Излучение и прием электромагнитных волн.

Отражение и преломление электромагнитных волн.

Лабораторные работы

Определение ускорения свободного падения при помощи нитяного маятника (№3).

Оптика (13час)

Введение в оптику. Основные законы геометрической оптики. Законы распространения света. Оптические приборы.

<u>Волновые свойства света.</u> Дисперсия света. Элементы специальной теории относительности. Постулаты Эйнштейна. Элементы релятивистской динамики. Излучение и спектры. Шкала электромагнитных излучений. <u>Различные виды электромагнитных</u> излучений и их практические применения.

Демонстрации

Интерференция света.

Дифракция света.

Получение спектра с помощью призмы.

Получение спектра с помощью дифракционной решетки.

Поляризация света.

Прямолинейное распространение, отражение и преломление света.

Оптические приборы

Лабораторные работы

Экспериментальное измерение показателя преломления стекла (№4)

Экспериментальное определение оптической силы и фокусного расстояния собирающей линзы (№5).

Определение спектральных границ чувствительности человеческого глаза. Измерение длины световой волны (№6).

Наблюдение интерференции и дифракции света (№7).

Квантовая физика и элементы астрофизики (24 час)

<u>Гипотеза Планка о квантах.</u> Фотоэффект. Законы фотоэффекта. <u>Фотон. Гипотеза де</u> <u>Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Соотношение неопределенностей Гейзенберга.</u> Квантовые свойства света: световое давление, химическое действие света.

<u>Модели</u> строения атомного ядра. Планетарная модель атома. Квантовые постулаты <u>Бора.</u> Излучение и поглощение света атомом. <u>Лазеры.</u>

Радиоактивность. <u>Ядерные силы. Дефект массы и энергия связи</u> атомных <u>ядер.</u> Цепная ядерная реакция. Атомная электростанция. <u>Ядерная энергетика.</u> Применение физики ядра на практике. <u>Влияние ионизирующей радиации на живые организмы. Доза излучения. Закон радиоактивного распада и его статистический характер. Элементарные частицы. Фундаментальные взаимодействия.</u>

Физическая картина мира.

Небесная сфера. Звездное небо. Законы Кеплера. Строение Солнечной системы. Система Земля — Луна. Общие сведения о Солнце, его источники энергии и внутреннее строение. Физическая природа звезд. Звезды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звезд. Наша Галактика. Происхождение и эволюция галактик. Красное смещение. Пространственные масштабы наблюдаемой Вселенной. Строение и эволюция Вселенной. Жизнь и разум во Вселенной.

Демонстрации

Фотоэффект.

Линейчатые спектры излучения.

Лазер.

Счетчик ионизирующих частиц.

Лабораторные работы

Наблюдение сплошного и линейчатого спектров (№8).

Резерв свободного учебного времени (11 час)

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения физики на базовом уровне ученик должен знать/понимать

- смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;
- **смысл физических величин:** скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
- *смысл физических законов* классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
- *вклад российских и зарубежных ученых*, оказавших наибольшее влияние на развитие физики; **уметь**
- *описывать и объяснять физические явления и свойства тел:* движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- *отпичать* гипотезы от научных теорий; *делать выводы* на основе экспериментальных данных; *приводить примеры, показывающие, что:* наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
- *приводить примеры практического использования физических знаний:* законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи.;
- оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
- рационального природопользования и защиты окружающей среды.

ЛИТЕРАТУРА

Для учащихся

Физика. Учебник для 10 класса. Авторы: Г.Я.Мякишев и др. — М.: Просвещение, 2008 **Физика.** Учебник для 11 класса. Авторы: Г.Я.Мякишев и др. — М.: Просвещение, 2009

Для учителя

Демонстрационный эксперимент по физике в средней школе: пособие для учителей / В. А. Буров, В. С. Зворыкин, А. П. Кузьмин и др.; под ред. А. А. Покровского. — 3-е изд., перераб. — М.: Просвещение, 1979.

Кабардин О. Ф. Экспериментальные задания по физике. 9— 11 кл.: учеб. пособие для учащихся общеобразоват. учреждений / О. Ф. Кабардин, В. А. Орлов. — М.: Вербум-М, 2001.

Шахмаев Н. М. Физический эксперимент в средней школе: механика. Молекулярная физика. Электродикамика /Н. М. Шахмаев, В. Ф. Шилов. — М.: Просвещение, 1989.

Сауров Ю. А. Молекулярная физика. Электродинамика / Ю. А. Сауров, Г. А. Вутырский. — М.: Просвещение, 1989.

Сауров Ю. А. Физика в 10 классе: модели уроков: кн. для учителя / Ю. А. Сауров. — М.: Просвещение, 2005.

Сауров Ю. А. Физика в 11 классе: модели уроков: кн. для учителя / Ю. А. Сауров. — М.: Просвещение, 2005.

программное и учебно-методическое оснащение

Предмет	Класс	Количество часов в неделю согласно учебному плану школы					
		Федеральный компонент	Региональный компонент	Школьный компонент	Реквизиты программы	УМК обучающихся	УМК учителя
Физика	10	2			Рабочая программа составлена на основе: 1) Примерная программа среднего (полного) общего образования по физике 2) Федеральный компонент государственного стандарта. Физика (утвержден приказом Минобразования РФ от 5 марта 2004г. №1089	Физика. Учебник для 10 класса. Автор:Г.Я.Мякишев и др. – М.: Просвещение, 2008 Рымкевич А.Д. Сборник задач по физике. – М.:Просвещение, 2009	Демонстрационный эксперимент по физике в средней школе: пособие для учителей / В. А. Буров, В. С. Зворыкин, А. П. Кузьмин и др.; под ред. А. А. Покровского. — 3-е изд., перераб. — М.: Просвещение, 1979. Кабардин О. Ф. Экспериментальные

1:	1 2		3) Программы общеобразовательных учреждений. Физика. 10-11 классы. Авторы: П.Г.Саенко и др М.: Просвещение,2007 Рассмотрена и согласована методическим объединением. Протокол № от ОТ ОТ	Физика. Учебник для 11 класса. Автор:Г.Я.Мякишев и др. – М.: Просвещение, 2009 Рымкевич А.Д. Сборник задач по физике. – М.:Просвещение, 2009	задания по физике. 9— 11 кл.: учеб. пособие для учащихся общеобразоват. учреждений / О. Ф. Кабардин, В. А. Орлов. — М.: Вербум-М, 2001. Сауров Ю. А. Физика в 10,11 кл: модели уроков: кн. для учителя / Ю. А. Сауров. — М.: Просвещение, 2005
----	-----	--	---	--	---